Fire Prevention Education Delivered by On-Duty Fire Fighters:
Cluster Randomized Controlled Study

Executive Summary

This case study summarizes a presentation at the National Symposium on Model Performance in Fire Prevention in May 2012.

With assistance from the University of Fraser Valley in British Columbia (BC) and John Jay College of Criminal Justice in New York, the Surrey Fire Service in British Columbia initiated a data-driven fire prevention education program in which on-duty fire fighters delivered education programs to high risk groups.

Overview

Four main points motivated a door-to-door, on-duty fire fighter-delivered, fire prevention education program in Surrey, BC. These points are:

- Working smoke alarms and public education reduce fires and save lives
- Not everyone has a smoke alarm, and smoke alarms do not last forever
- It is possible to increase the likelihood of houses having working smoke alarms
- This must be a data-driven process, and there is no one-off, quick fix (Reference 1)

This talk discusses the background research that drove this initiative (Reference 2), the evaluation outcome, and the ongoing directions of these activities in Surrey, BC.
Formative Evaluation (qualitative or quantitative risk assessment)

Analysis of almost 50,000 residential fires across Alberta (AB), British Columbia (BC), and Ontario (ON), involving 663 deaths, revealed:

- The death rate per 1,000 fires increased by 74% in the absence of a working smoke alarm
- Only 36% of houses that experienced fires over this 5 year period had working smoke alarms
- Alarms stop working with time
- Fire risk is non-random – there are high-risk people, properties, and places

Although case studies have demonstrated that public fire education works (Schaenman et al., 1990, Proving Public Fire Education Works), there is a lack of cluster randomized controlled evaluations to provide conclusive support.

In 2008, the Surrey Fire Service commenced a series of door-to-door, on-duty fire fighter delivered, public education visits. The impact was evaluated with respect to a cluster randomized control group.

At the time of evaluation (November, 2010), 18,473 high-risk dwellings had been visited (by June, 2012 this increased to almost 40,000 homes). Fire-prevention information packages were distributed and smoke alarm checks were undertaken where possible. Information packages covered the following topics:

- Letter from the Surrey Fire Chief offering a no-charge home safety inspection and installed smoke alarm upon request
- Information on smoke alarms
- Home fire escape plans
- Children and fire
- Senior fire safety
- Kitchen fire safety

The 18,473 houses were not all visited at the same time. Instead, the city was divided up geographically and the deliveries were completed over two week periods, with about 2,500 houses visited each time. To complete the visits normal working hours, training duties were suspended for a 2-week period.
Approximately four of these delivery periods were completed per year, focused during the spring-summer-fall periods. Using geographical information systems (GIS), census data, and recent fire history, high-risk addresses were identified that captured the greatest densities of:

- Elderly citizens,
- Families with young children
- Highly disadvantaged individuals
- Highly residentially mobile individuals
- High fire-density areas

Process Evaluation *(analysis of the program’s development and early implementation)*

One data-driven strategy to manage the logistics involved with this type of prevention initiative is to use the natural fluctuations in work-loads to find additional time in the normal schedule of activities. Also, focus on risk, starting with the highest risk areas, as this is where you will get the greatest return on prevention investment. Risk in this case was determined as an interaction between recent fire history and the variations in socio-economic and demographic profiles across the city (as determined by Canadian Census data). The key here was using the data to drive the operational decision-making process.

Impact Evaluation *(identification of measurable changes that are cognitive gains or behavior changes that reduced risk)*

The following finding was recently released in the *Journal of Safety Research* (Reference 3):

- Increased activation of alarms when fires occurred post-intervention, with no increase for controls

Outcome Evaluation *(longer term documentation that supports reduction of injury, death or economic losses)*

The following main findings were recently released in the *Journal of Safety Research* (Reference 3):

- Relative to cluster controls there was a 4.4 times greater reduction in the rate of fires for homes visited by the program (63.9% reduction in the annual rate of fires over the evaluation period in intervention areas compared to 14.6% reduction in control areas)
- Increased activation of alarms when fires occurred post-intervention, with no increase for controls
- Increased containment of fires to the object of origin post-intervention and no increase for controls
- Trends indicative of reduced dollar damage for fires post-intervention, with no trend for controls

In combination with two other data-driven prevention initiatives (boarding up vacant houses and electrical fire safety inspections on indoor marijuana grow operations) between 2006 and 2011, the city of Surrey has seen a 48% reduction in the annual rate of residential fires per 1,000 dwellings, and a 40% reduction in fire-related casualty per 10,000 residents. The city has increased in population by 24% over the last decade.

Recommendations for Others

Programs such as this can become victims of their own success. The need for fire prevention education and smoke alarms cannot be treated with a single intervention. On-going commitment is required. Coordinated, sustained, multifaceted approaches designed to build on the Three E’s of injury prevention (education, environment, and enforcement) are needed.

Surrey Fire is: (a) generating creative approaches to ongoing testing of alarms in high-risk homes, (b) monitoring the temporal cohorts as a routine part of trends analysis, and (c) spearheading a movement towards ensuring there is a working smoke alarm in every Canadian home.

Given the range of effective prevention models that exist, there is no excuse for not doing something.

References

For More Information

Dr. Joseph Clare, Strategic Planning Analyst, Surrey Fire Service (2010-13) and adjunct professor in the Crime Research Centre, University of Western Australia: joe.clare@uwa.edu.au.

Fire Chief Len Garis, City of Surrey, British Columbia, and Adjunct Professor in the School of Criminology and Criminal Justice at the University of the Fraser Valley: Surrey Fire Service, 8767 132nd Street, Surrey, BC, V3W 4P1, Canada, 778-846-0851, LWGaris@surrey.ca.

To see an expanded version of this case study that was presented at the 2012 National Symposium on Model Performance in Fire Prevention hosted by Vision 2020, click http://strategicfire.org/page.cfm/go/2012-Model-Performance.