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Executive Summary
More than 80 percent of all fire deaths in the United States occur in homes. While this percentage 
has remained fairly consistent for years, the overall number of fire deaths has declined significantly. 
The introduction and widespread use of smoke alarms in homes is considered to be a principal factor 
contributing to the decline in home fire deaths. As significant an achievement as this has been for the 
nation, there are persistent facets of fire hazards that have eluded solutions. Although socio-economic 
factors create obvious limits, low-cost technological approaches have markedly reduced and can con-
tinue reducing the impact of fire losses in residential occupancies.

An earlier publication, “Home Smoke Alarms — A Technology Roadmap,” provided an overview of 
current and future technologies that could prove helpful in designing improved residential smoke 
alarms.1 Few new sensor types were identified that could benefit fire detection, and their potential 
use is limited by cost and availability. In the report, the use of shorter wavelengths and multiple scat-
tering angles were recognized as ways to improve existing photoelectric sensors, but such methods 
have yet to be implemented in residential systems. A powerful mathematical technique was briefly 
disclosed that uses data from one or more sensors to optimize the discrimination of hazardous and 
nonhazardous conditions. If this is properly implemented using microcontrollers commonly found 
in modern smoke alarms, nuisance alarms could be greatly reduced, thus relieving the temptation by 
the resident to disable the offending alarm.

Linear discriminant analysis (LDA) is a technique employed in advanced chemical detection for mil-
itary and civilian systems. Applying LDA techniques to historical sensor data recorded in fire testing 
yields patterns associated with various types of fires and nuisance conditions. Modeling results on the 
same fire test situations show that smoldering fires can often be detected sooner than conventional 
alarms, even when using only a photoelectric sensor. The addition of a temperature sensor or a car-
bon monoxide sensor allows better discrimination between real fires and nuisance sources.

The Smart Smoke Alarm is a practical demonstration of a home smoke alarm using LDA. Combinations 
of sensors found in today’s smoke alarms are analyzed in real time by an inexpensive microcontroller 
to determine whether to alarm or remain silent. Ten units were tested at Underwriters Laboratories 
(UL), and they alarmed during the existing UL-217 fire tests2 as well as proposed flaming and smolder-
ing foam tests. These units also performed well in limited nuisance tests and alarmed only when dan-
gerous conditions were approached. We anticipate that the technology will be adopted by smoke alarm 
manufacturers to improve the performance of home smoke alarms without substantially increasing the 
cost to consumers.

1 Warmack, R. J., et al. (2012). “Home Smoke Alarms — A Technology Roadmap.” http://www.cpsc.gov//
PageFiles/93425/homesmokealarm.pdf.
2 “Standard for Single and Multiple Station Smoke Alarms.” (2006). UL-217, Edition 6. UL, Northbrook, IL.

http://www.cpsc.gov//PageFiles/93425/homesmokealarm.pdf
http://www.cpsc.gov//PageFiles/93425/homesmokealarm.pdf
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Home Smoke Alarms
The introduction and widespread adoption of residential smoke alarms over the past four decades has 
been tremendously successful in saving countless lives by providing early warning for home occupants 
to potentially life threatening fires. Smoke alarms have been developed to be reliable in general and 
economical to employ, requiring occasional maintenance via testing and battery replacement. Never-
theless, there remain some shortfalls in operation. Nuisance or false alarms, which are triggered by 
nonfire-related sources, account for the majority of smoke alarm activations.3 Additionally, construction 
methods and home furnishing materials have changed over the years, dramatically increasing the fire 
growth rate and reducing the time for safe egress. Rousing sleeping occupants in a timely manner can 
also be challenging, especially for children and the elderly. Given these concerns, improvements in 
residential smoke alarms could have a huge impact upon residential fire safety by reducing the number 
of injuries and deaths.

Nuisance alarms constitute a serious impediment to smoke alarm performance, as occupants some-
times disable the offending alarms, rendering them useless for alarming in genuine fires. One study 
found that in reported home fires in which smoke alarms were present but did not operate, almost 
half (47 percent) of the smoke alarms had missing or disconnected batteries.4 Nuisance alarms were 
also found to be the leading reason for disconnected or unpowered smoke alarms. Thus, nuisance 
alarms are an indirect cause of home fire injuries and deaths.

In response to the problems caused by nuisance alarms, requirements for smoke alarms to have 
“resistance to common nuisance sources” have been added to the 2013 edition of NFPA 72, National 
Fire Alarm and Signaling Code,5 effective Jan. 1, 2019. A current study6 is underway by the Fire Protection 
Research Foundation to define just what constitutes “resistance to common nuisance sources.” This 
study will supply information to the UL-217 task group to develop performance requirements to sat-
isfy the NFPA 72 future requirements. Because of the current prevalence of nuisance alarms resulting 
from cooking, NFPA 72 changed the installation requirement for smoke alarms installed from 6 feet 
to 20 feet away from a fixed cooking appliance (range or stove). This requirement was made effective 
as early as Jan. 1, 2016.

Most residential smoke alarms are based solely upon the detection of smoke aerosol particles emitted 
by nearly all fires. Ionization sensors in smoke alarms are especially sensitive to dense small particles 
associated with flaming fires, while photoelectric sensors in smoke alarms are more sensitive to less 
dense concentrations of larger particles associated with smoldering fires. In either case, manufactur-
ers set sensitivity thresholds to meet UL-217 fire detection requirements that include tests for both 
types of fires. Unfortunately, both types of sensors respond to other nonfire or nuisance aerosols, 
including cooking fumes, dust and steam fog. Additionally, other principal combustion products, 
including heat, carbon monoxide and carbon dioxide, have until recently been largely ignored as an 
auxiliary means for fire detection.

Gottuk and co-workers demonstrated that combination aerosol and carbon monoxide detectors 
using simple algorithms significantly improve fire detection and false-alarm rejection.7 Cestari and 

3  Ahrens, M. “Smoke Alarms in U.S. Home Fires.” 2014, National Fire Protection Association (NFPA), Quincy, MA.
4  Greene, M. A., & Andres, C. (2009). “2004-2005 National Sample Survey of Unreported Residential Fires.” U.S. 
Consumer Product Safety Commission (CPSC).
5  “2013 NFPA 72: National Fire Alarm and Signaling Code.” NFPA, Quincy, MA.
6  Dinaburg, J., & Gottuk, D. (2014). “Smoke Alarm Nuisance Source Characterization — Phase 1.” Fire Protection 
Research Foundation, Quincy, MA.
7 Gottuk, D. T., et al. (2002). “Advanced fire detection using multi-signature alarm algorithms.” Fire Safety Journal 37: 
381-94.
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co-workers also found that carbon monoxide sensing alarms could respond to smoldering fires faster 
than photoelectric-type aerosol sensors and with better nuisance rejection.8

Fire detection technology must continue to evolve with advances in sensors, microcontrollers and 
alerting methods. Some integration is already beginning to be seen for commercial smoke alarms. 
Combination ionization and photoelectric smoke alarms have been available for some time, and they 
address the weaknesses of each type of sensor. Unfortunately, simple threshold programming can 
increase the propensity for alarming to nuisance sources.

Some models are beginning to appear with more sophisticated algorithms that adjust sensitivity dy-
namically according to the progression or rates of change of the aerosol sensor.9 By this means, drifts 
due to changing atmospheric conditions and aging can be compensated and distinguished from more 
rapid changes that may be indicative of fire conditions. A few models have combined signals from 
carbon monoxide and temperature sensors in their fire detection algorithms. The presence of elevated 
levels of these signals by themselves does not necessarily indicate fire, but when appropriately com-
bined with signals from aerosol sensors, it forms a strong corroboration. Even humidity sensors have 
been employed to signal the possible nuisance source of steam fog particles. Such techniques show an 
encouraging trend for improved performance in detecting fires and rejecting nuisance sources.

Microcontrollers allow the use of advanced discrimination techniques to be exploited, and they are 
particularly applicable for multiple channels of data from multiple sensors. Decisions must be made 
in real time to classify basic conditions such as “fire,” for which the alarm is sounded or “nuisance” 
or “normal” conditions, for which no alarm is given. For systems that include a carbon monoxide 
sensor, a toxic gas alarm could be added to indicate the presence of that gas, according to UL-2034 
specifications,10 when a fire is not indicated. Approaches for smoke alarms based upon rules involving 
set concentration thresholds of multiple sensors are cumbersome for the design engineer and possibly 
inaccurate when in service.

This report presents the use of advanced statistical techniques that allow data from multiple channels 
to be classified for alarming. LDA, for example, involves a set of linear equations that can be readily 
evaluated on an inexpensive microcontroller in an advanced smoke alarm. The linear coefficients for 
the LDA are determined beforehand using training data from realistic fire scenarios. Fortunately, con-
siderable data already exist in prior tests, and they can be used for training and validating the model. 
Statistical techniques also allow each sensor output and its rate of change to be included in the anal-
ysis. A smoke alarm employing one or multiple sensors and a suitably programmed microcontroller 
can provide faster response to real threats while rejecting conditions that would trigger false alarms in 
conventional smoke alarms.

8 Cestari, L. A., Worrell, C., & Milke, J. A. (2005). “Advanced fire detection algorithms using data from the home smoke 
detector project.” Fire Safety Journal 40(1): 1-28.
9  Gonzales, E. V. “Dynamic Alarm Sensitivity Adjustment and Auto-Calibrating Smoke Detection.” (2011). U.S. Patent 
Application 201110018726.
10  “Standard for Single and Multiple Station Carbon Monoxide Alarms.” (2008). UL-2034, Edition 3. UL, Northbrook, IL.
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Classification Techniques and Discriminant Analysis
The critical function of a smoke alarm is to determine whether observed conditions indicate that an 
alarm is warranted. For most existing alarms with a single aerosol detector, classification is simply to 
alarm for aerosol concentrations beyond a fixed threshold, which unfortunately can also be met by a 
sufficient level of nuisance aerosols from any source. Designing a smoke alarm based upon whether 
any one of several channels exceeds a certain threshold can lead to excessive nuisance alarms if the 
thresholds are set too low or false negatives if the thresholds are set too high. Pattern recognition or 
statistical classification couples the data channels so that the analysis provides the best discrimination 
for classification based upon sensor response to historic data.

Classification methodologies are types of mathematical techniques that determine class or group 
membership of an object of unknown membership according to rules derived from training data 
collected from all classes. These include discriminant analysis, tree-based modeling, neural networks 
and nearest-neighbor classification. Principal components analysis (PCA) is a useful technique for un-
derstanding the main characteristics of multiattribute data and how those characteristics may relate 
to class differences. Next, we discuss PCA and then focus upon LDA as a recommended technique to 
program alarms in residential smoke alarms.

Principal Components Analysis
One of the goals of PCA is to identify main characteristics of a data set containing a number of inter-
related variables11 (e.g., sensor data channels in a smoke alarm). PCA transforms the original variables 
into a new set of uncorrelated variables called principal components (PCs). The PCs are weighted sums 
of the original variables, where the weights are optimally chosen. The first PC is constructed so that it 
explains the most variation in the data, with the caveat that the source of the variation may or may not 
be due to differences among the classes. The second PC explains the next greatest amount of the vari-
ation and is uncorrelated with the first PC. Other PCs are constructed similarly. PCA is not a classifica-
tion technique per se, but if the major sources of variation in the data are related to the class differenc-
es, then the PCs can be useful in a discriminant analysis. PCA has been used to develop fire detection 
algorithms that have shown improved performance for fire sensitivity and nuisance recognition.12

Linear Discriminant Analysis
Discriminant analysis is supervised pattern recognition,13 and it can be used for optimal classification 
of conditions based upon any number of sensor channels. A set of discrimination rules is constructed 
from training data and then used to classify new observations into predefined groups. The basis for 
pattern recognition is supplied by actual field data of smoke, temperature and combustion products 
for stimulating prescribed sets of sensors to be incorporated in a system.

LDA is one approach that classifies an observation according to its (multivariate) similarity or close-
ness to a group. In LDA, the observed data variables, or their PCs, undergo a linear transformation 
into new, uncorrelated variables, called linear discriminant (LD) coordinates, in such a way as to 
maximize the differences among the predefined groups, as measured on these variables.

Unlike PCA, which does not take into account the differences between classes of events, the goal of 
LDA is to separate classes of events. LDA classifies each observation of all sensor channels, including 
rates of change, using a simple linear transformation to obtain the discriminant coordinates (i.e., the 
observation’s position in discriminant space). The closeness of the discriminant coordinates to each 

11  Joliffe, I. T. “Principal Component Analysis.” (1986). New York: Springer-Verlag.
12  Cestari, Worrell, & Milke.
13  Mardia, K. V., Kent, J. T., & Bibby, J. M. (1976). “Multivariate Analysis.” New York: Academic Press, Inc.
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of the prescribed classes or groups (e.g., “normal,” “nuisance,” “fire,” “toxic”) can then be easily 
calculated and sorted — even by inexpensive microcontrollers.

There is a hierarchy of the discriminant coordinates. The first discriminant coordinate, LD1, accounts 
for the greatest separation among the groups; the second discriminant coordinate, LD2, accounts for 
the next greatest separation; and so forth. The maximum number of discriminant coordinates that 
can be extracted is one fewer than the number of groups.

Plots of combinations of the various discriminant coordinates are often used to visualize group sepa-
rations. Clear group separations seen in two-dimensional plots will indicate success for those groups. 
Groups that appear to overlap in one plot (e.g., in the LD1 versus LD2 plot) may appear separated in 
another two-dimensional view (e.g., LD2 versus LD3). A discrimination rule can still be effective, 
even though there is no clear separation of groups in certain two-dimensional plots.
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Linear Discriminant Analysis With Multiple Sensors
Scaling and Baseline Correction

Discriminant analysis begins by preprocessing or scaling data recorded by one or more sensors. 
Preprocessing is performed in the same way for training data and for real-time data collected by a 
smoke alarm. Changes and rates of change in sensor signals are important for indicating deviations 
from normal conditions. A convenient method is to offset signals by respective baselines x

0i
, which 

can be determined by a modified moving average according to the following equation, where x
i
 are 

the scaled sensor signals:

 

 
x

0i|new
=

(n-1)x
0i
+x

i

n  
(1)

To eliminate slow offset drift in sensors, n can be very large, representing measurements over sev-
eral hours or days. When n is a small number, representing a shorter average, then effective rates of 
change are calculated by the difference between the reading and the baseline. Sensor signals S

i
 are 

simply differences between scaled signals from various sensors and their respective baselines:

 S
i
=x

i
-x

0i
 (2)

Note that there can be more than one S from each sensor when baseline offsets with different values 
of n are used. For example, an aerosol sensor may be assigned two sensor signals if one has a long-
term baseline subtracted to correct for drift associated with changing atmospheric conditions and 
aging, and if another has a shorter baseline that shows rapid changes associated with either a smol-
dering or flaming fire event. The sensor signals represented in (2) are based upon test data used as 
input to the LDA or are real-time data observed by a smoke alarm.

Classification

To build the LDA for application in a smoke alarm, each successive sensor signal S
i
 in time is assigned 

to a predefined group. Since training data generally begin with normal conditions, the early data is 
classified as “normal.” As sensor data begin to change, the classification is appropriately changed. For 
example, normal cooking conditions may evoke sensor changes, so the assignment of “nuisance” is 
appropriate. Various types of fires can be defined as separate groups because the conditions for each 
type of fire can be rather different. Smoldering fires typically grow much more slowly with less 
observable temperature rise than fast, flaming fires. It is advantageous for classification to maintain 
separate grouping even though either condition would be cause for triggering an alarm. Further, be-
cause fires can also transition from one type to another, it is also advantageous to assign each obser-
vation to the appropriate group. Rules can be generated to qualify each observation into an assigned 
group. Observations that do not fit into predefined groups can be disqualified and omitted from the 
training data.

Given training data from a series of tests containing observations with scaled signals S
i
 along with 

their assigned groups, the LDA may be obtained with standard software packages, including “R,” 
Mathematica, Matlab, SAS, SPSS and Stata. The output of the LDA includes a set of coefficients D

ij
 and 

offsets C
i 
to transform observations into LD coordinates. Given n

s
 signal channels S

i
 for each observa-

tion, the associated LD coordinates are calculated according to:
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j
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n
s

D
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The LDA output also generates the LD coordinates G
kj
 for the mean or centroid of each group so that the 

LD coordinates of each observation in LD space can be compared to the centroid of each group. Given n
d
 

dimensions in LD space, the Mahalanobis or Euclidian distance squared to each centroid k is given by:

 
Rk

2=
n

d

(G
kj
-LD

j
)2∑

j=1  
(4)

A simple criterion for classification is to select the group associated with the minimum Rk
2, although 

other selection criteria could be employed based upon the LD coordinates of the observation.

Once the LDA is formulated based upon extensive training data, implementation for classification in 
a modern microcontroller is straightforward. Sensor data are scaled and offset in the same manner as 
used in the LDA formulation to yield n

s
 signal channels S

i
. The LDA coefficients D

ij
 and C

i
 stored in the 

microcontroller are used to transform S
i
 into LD coordinates according to (3). Classification may be 

assigned according to (4) or similar means.

Once the LD
j
 coordinates have been calculated, classification can be assigned by the microcontroller 

code based upon the Mahalanobis or Euclidean distance squared to each centroid using (4) or by 
other criteria. In effect, based upon training data and scaling, LDA optimizes the classification of 
observations by creating a coordinate map with regions associated with normal ambient, nuisance 
and various types of hazardous conditions. Once the LD coordinates of an observation are calculated, 
a decision can be made to turn on an alarm or to remain silent.
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Linear Discriminant Analysis Studies Using Fire Test Data
Comparisons can be made between alarms based upon LDA classification and conventional alarms 
based upon smoke thresholds. Training data for LDA transformations were supplied by UL14 during 18 
fire tests in the UL-217/UL-268 Fire Test Room and by the National Institute of Standards and Technol-
ogy (NIST),15 which took data from historical tests of fire and nuisance situations in home dwellings. 
NIST data were recorded during 21 fires, each with multiple sensor locations (67 total) in a manufac-
tured (mobile) and a two-story home, plus 25 nuisance tests that frequently triggered conventional 
ionization and/or photoelectric alarms for common cooking scenarios such as toast, pizza, bacon and 
hamburgers. The ceiling sensors common to both UL and NIST tests included photoelectric, ioniza-
tion, temperature and carbon monoxide sensors, as well as commercial home smoke alarms.

First, a simple LDA was constructed using the UL fire data with events categorized as flaming or 
nonflaming fires. Data recorded prior to the onset of the fire was categorized as “normal.” Only three 
channels of data were included in the analysis: (1) the long-term baseline-corrected ionization signal, 
(2) its rate of change with a 10-minute baseline, and (3) the rate of change of the temperature with 
a five-minute baseline. The conditions associated with normal, flaming and nonflaming situations 
appear in distinctive locations of LD space.

To illustrate the progression of a fire, Figure 1 shows the calculated LDA coordinates for the first two 
dimensions during two test fires. The coordinates start near the normal centroid and progress toward 
and beyond the centroids for both the flaming and nonflaming fires. Although the LDA coordinates 
can easily resolve the differences between the two types of fires, only one alarm sound would be 
produced for typical homeowner use.

 
Figure 1. Illustrations of the LDA coordinate progression in an example of flaming fire (left) and 
nonflaming or smoldering fire (right). The LDA centroids of the test conditions of normal, flaming and 
nonflaming are indicated.

In the flaming fire test shown in Figure 1, the commercial alarms sounded at 3.5 minutes for an 
ionization alarm and 7.3 minutes for a photoelectric alarm. The alarm based upon LDA coordinate 
proximity to each of the centroids would have triggered at 2.2 minutes or 37 percent faster than the 
commercial ionization alarm. In the case of the smoldering fire shown in Figure 1, the commercial 
alarms sounded at 45 minutes for photoelectric alarm and 48 minutes for the ionization alarm, while 
the LDA alarm would have alerted at 34 minutes or 24 percent faster. Obviously, early detection times 
are important to extend the time for safe egress in emergency conditions.

14  Fabian, T. Z., & Gandhi, P. D. (2007). “Smoke Characterization Project.” Northbrook, IL: UL.
15  Bukowski, R. W., et al. “Performance of Home Smoke Alarms.” (2008). Technical Note 1455-1, revision. This study is 
also known as DUNES II.
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The NIST data include a variety of fires and nuisance sources so that response time and false-alarm 
rejection can be evaluated for various LDAs. Because the characteristics of the fires change during 
their evolution, groups were more narrowly defined according to sensor response. For example, data 
can be categorized as “Flaming” when the rates of increase in the temperature and aerosol signals are 
above set thresholds. Conversely, data can be categorized as “Smoldering” when the rates of increase 
in temperature and aerosol signals are below set thresholds. The category of “Grease” was added as a 
characteristic of vegetable oil that was heated to ignition.

An example of the progression of conditions for one test fire is shown in Figure 2 in three-dimen-
sional LD space. In this LDA, ion, photoelectric, temperature and carbon monoxide sensors were 
included. As time moves forward, the conditions evolve from Normal to Nuisance and finally to 
Smoldering. The LDA would have alarmed at 53 minutes, while the conventional combination alarms 
actually alarmed at 90 minutes.

Figure 2. Progression in three dimensions of LD space for data recorded by NIST16 during a 
smoldering chair test (SDC01A). Conditions are color coded: Normal (green), Nuisance (dark 
brown), and Smoldering (light brown). The colored circles represent the centroids of various 
fire conditions.

In Figure 3, the performance of LDA-based alarms using various combinations of sensors is compared 
to the commercial alarms used in the NIST tests. Using three sensors, photoelectric, temperature and 
carbon monoxide, the LDA alarm would have alerted to the smoldering fires an average of nearly 14 
minutes faster than a conventional photoelectric-ionization combination alarm. Such an LDA alarm 
was also found to trigger more slowly than conventional smoke alarms and fully suppress half of the 
nuisances that triggered false alarms in conventional smoke alarms. In any case, the LDA-based algo-
rithm would always respond more slowly to nuisances than conventional alarms. Even when only a 
conventional photoelectric sensor is used (not shown in Figure 3), LDA processing has improved the 
alerting to smoldering fires compared to a conventional photoelectric alarm, although there was only 
a very small improvement in false-alarm rejection over conventional aerosol-based smoke alarms.

Tests involving heated vegetable oil (not shown in Figure 3) show the tendency of conventional 
smoke alarms to trigger well prior to ignition due to the production of oil aerosols. Little carbon 
monoxide is produced until about the time of ignition. Because of the absence of carbon monox-
ide and insignificant temperature rise for the remote sensors used in these particular tests, the LDA 

16 Bukowski, et al.
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algorithm classifies the event as a nuisance until the ignition point is approached. Since heated oil is 
frequently used in cooking, smoke aerosols involved could be considered a nuisance until the oil is 
heated well above normal cooking temperatures, at which point an alarm is desirable. Although oil 
temperature data is unavailable in the NIST tests, limited experimental tests of the LDA algorithm 
with heated oil at UL are presented in a subsequent section of this report.

Figure 3. Comparison of alarm times for various LDA-based sensor sets against a combination alarm with an ionization and photo-
electric sensor in which the most sensitive setting is used for both sensors. The bars represent individual tests segregated according 
to flaming, smoldering and nuisance situations. The median and mean times to alarm for the LDA algorithm are given in the insets.

The worth of each sensor to the overall performance of the LDA smoke alarm can also be inferred. 
Comparison of the alarm times with and without the ionization sensor in Figure 3 reveals that the 
alarm times for flaming fires are improved by about 30-40 seconds over systems that use a photo-
electric sensor for aerosol detection. The well-known fact that ionization sensors in smoke alarms are 
more sensitive to flaming fires is reflected in these simulations. The addition of the ionization sensor 
has a slightly deleterious effect upon nuisance rejection in this LDA simulation, although alarming to 
the nuisances tested is always delayed over that observed using conventional smoke alarms. The ad-
dition of the carbon monoxide sensor improves nuisance rejection and smoldering fire performance, 
since the production of carbon monoxide is nearly always associated with combustion but not with 
nuisance sources.



10 Using Linear Discriminant Analysis

The conclusion is that LDA processing alone can improve response time, at least for smoldering fires, 
while additional sensors can provide faster detection of fires and rejection of nuisance sources for false 
alarms. The benefit of the addition of carbon monoxide sensing is twofold: (1) acting as a toxic gas 
sensor and (2) acting in concert with smoke sensors for improved fire detection. A practical smoke 
alarm that combines commercial sensors with a microcontroller implementation of LDA processing is 
described next.
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Prototype Design and Construction
Prototype home smoke alarms were constructed using 
multiple sensors integrated by an inexpensive micro-
controller that costs under $1 in volume. An electronic 
circuit was designed to allow up to four sensors to 
be populated and used for discrimination, includ-
ing ionization, photoelectric, carbon monoxide and 
temperature sensors. These sensors were taken from 
modern residential smoke alarms to demonstrate the 
immediate applicability of LDA with present sensor 
technology. Normal settings of biases and sensitivities 
were used on the aerosol sensors. An analog ampli-
fier circuit was developed to allow the electrochemi-
cal carbon monoxide sensor to resolve concentration 
changes to ±1 parts per million (ppm) with a rise time 
of about 15 seconds, which is consistent with early fire 
detection needs. The thermistor circuit has a resolution 
of approximately ±1 C and protrudes through the enclosure to better sample changes in temperature. 
A low-frequency speaker was added for improved alerting, consistent with findings that a 520-hertz 
square-wave auditory signal is much more effective than the currently used 3,100-hertz T-3 alarm 
signal.17 Figure 4 shows an assembled prototype with components mounted on a custom printed cir-
cuit board and enclosed in a custom shell that includes a battery chamber for three AA batteries.

The microcontroller is used to read the analog signals from each of the sensors and calculate the LDA 
signals and LD coordinates according to stored coefficients predetermined by LDA. The microcontrol-
ler then determines whether an alarm condition has been met and operates the alarm speaker and 
indicator lights as designed. Data from the LDA signals and the classification are also made available 
on a serial line for full recording of events during testing. Samples are taken at two-second intervals, 
between which the system sleeps to conserve battery life. The battery life of the prototype using 
three AA batteries was not tested, but it was calculated that the prototype smoke alarm would last six 
months or longer. Repackaging the prototype and carefully selecting the number and type of batter-
ies and/or having the unit be powered on alternating current (AC) with battery backup could satisfy 
the power requirement in UL-217.

17 Thomas, I., & Bruck, D. “Awakening of Sleeping People: A Decade of Research.” Fire Technology 46(3): 743-61.

Figure 4. Assembled prototype incorporating multiple 
sensors, a microcontroller, power (three AA batteries), and a 
speaker for 520 hertz alerting. The enclosure is 6.5 inches 
in diameter and 1.7 inches tall.
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Underwriters Laboratories Testing
In August 2014, 10 Smart Smoke Alarm prototypes were tested at UL in Northbrook, Illinois. Two 
types of units were tested; both included photoelectric, carbon monoxide and temperature sensors, 
and one type added an ionization sensor. LDAs were developed for each type of unit using fire and 
test data from the NIST study.18 After calibration testing, both types were subjected to standard UL-
217 fire tests plus flaming and smoldering foam tests. A limited set of nuisance tests were also per-
formed (steam, oil, toast, bacon).

Calibration Testing
The Smart Smoke Alarms were initially tested in a standard UL smoke box for threshold sensitivity 
using a smoldering wick. The LDA software was disabled, and units were programmed to alarm at 
a specified photoelectric threshold. Calibration was adjusted until the photoelectric reading corre-
sponded to the obscuration reading of the smoke box lamp at 0.5 percent/foot. The ionization sensor 
was similarly calibrated for units containing that sensor. Calibration factors for the carbon monoxide 
and temperature sensors had been previously determined at Oak Ridge National Laboratory (ORNL). 
The calibration factors of each sensor were programmed to be the same for all units and were not 
adjusted between individual units.

Fire and Nuisance Test Setup
UL-217 specifies a set of three alarms under test to be located on the ceiling of the fire test room and 
one to be on each of the side walls at a nominal 17.7-foot radius from the smoke source. The two 
types of Smart Smoke Alarms — five with photoelectric, temperature and carbon monoxide sensors 
and four with the same set of sensors plus an ionization alarm — were symmetrically positioned at 
the standard ceiling and wall positions. Units were rotated to allow the aerosol sensors to face the 
most presumably favorable draft inlet position, with aerosol sensors oriented toward the fire source.

Standard UL-217 fires were set up and conditions (lamp transmission and Measuring Ionization 
Chamber (MIC) current for the ceiling and two side walls) were recorded by UL personnel, while se-
rial data from the alarms were recorded on the external computer. Between each test, the room was 
cleared and reset to standard ambient conditions according to UL standard practice, and the alarms 
were power cycled to restore baselines that would otherwise have been affected by previous tests.

Fire Test Results
The time to alarm for each Smart Smoke Alarm and for each fire test is given in Table 1. Each of the 
units responded well within the prescribed four minutes for the flaming tests. Test 12 was repeated 
since the beam obscurance had only reached about 4 percent/foot by the end of the test. Figure 5 
shows the lamp obscurances and MIC readings during the repeated smoldering wood test. All units 
alarmed at beam obscurance readings between 0.5 percent/foot and 2 percent/foot, well below the 
required 10 percent/foot limit, except for Unit 11, which alarmed at about 10 percent/foot. The 
cause for the late alarm in this unit is unknown at present.

18  Bukowski, et al.
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Table 1. Alarm times and averages for each unit in minutes after the start of each fire test. Units 5 and 10 were located on the side 
wall; Units 9 and 15 were located on the opposing side wall; and the remaining five units were located on the ceiling.

Figure 5. Lamp obscurance and MIC reading during Test 15 — Smoldering Wood.

Excluding the flaming liquid test, the alarm times were closely grouped within each test for both 
types of units. The units equipped with ionization sensors alarmed significantly sooner in the flam-
ing liquid test, while units without ionization sensors required about one more minute to alarm. 
A similar pattern is seen in other flaming tests, although the differential advantage for units with 
ionization sensors is less than one minute. These observations are consistent with LDA simulations of 
flaming fires shown in Figure 3. For the smoldering tests, the ionization alarm typically adds little, if 
any, advantage for early alarming, if results from Unit 11 are excluded.

Details of sensor responses during each of the tests are shown in the appendix for a typical Smart 
Smoke Alarm (Unit 7). Both ionization and photoelectric sensors responded during each test, with 
the ionization sensor responding more to flaming tests and the photoelectric sensors responding 
more to smoldering tests. For the smoldering foam test, the response of the ionization sensor was 
very weak even after the obscuration had exceeded 10 percent/foot.
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Nuisance Test Results
A series of nuisance tests were also performed with the same fire room and layout as the fire tests. None 
of the units alarmed until dangerous conditions or ignition was reached, at which point both types of 
Smart Smoke Alarms triggered. The time to alarm for each unit and for each test is given in Table 2.

Test number: 16 17 18 19 20 21

Test: Oil (small 
skillet) Steam Steam Oil (large 

skillet) Toast Bacon

Time to ignition: 7.87 - - 25.83 - 22.48
Unit
5 (Ion, PE, CO, T) 7.95 No alarm No alarm 14.70 7.35 11.78
7 (Ion, PE, CO, T) 8.28 No alarm No alarm 15.38 8.52 12.30
8 (Ion, PE, CO, T) 8.33 No alarm No alarm 15.48 8.67 12.25
9 (Ion, PE, CO, T) 8.32 No alarm No alarm 15.18 8.68 12.12

10 (PE, CO, T) 8.05 No alarm No alarm 14.28 7.53 11.93
12 (PE, CO, T) 8.30 No alarm No alarm 20.57 8.53 14.15
13 (PE, CO, T) 8.32 No alarm No alarm 15.07 8.47 12.10
14 (PE, CO, T) 8.47 No alarm No alarm 15.80 8.45 11.83
15 (PE, CO, T) 8.02 No alarm No alarm 14.13 8.55 11.23

Units 5-9 average (with ion) 8.22 - - 15.19 8.30 12.11
Units 10-15 average (w/o ion) 8.23 - - 15.97 8.31 12.25

Overall average 8.23 - - 15.62 8.31 12.19
Standard deviation 2% - - 12% 6% 7%

Table 2. Alarm times for each unit in minutes after the start of each “nuisance” test.

In Tests 16 and 19, a small or large skillet with approximately 3/8-inch of canola oil was located on 
an electric range that was set on high. The small skillet reached ignition temperature so quickly that 
the alarms sounded within seconds after ignition. In the case of the large skillet, the alarms typically 
sounded when the oil had reached about 310-320 C, which is above ordinary cooking temperatures 
but below the ignition point. 

In Test 20, eight slices of toast were repeatedly toasted until heavily charred, accompanied by signifi-
cant smoke emission and carbon monoxide evolution, at which point the alarms properly sounded to 
indicate dangerous conditions.

In Test 21, a pound of bacon strips covered the large skillet and was taken to ignition. The alarms 
typically sounded at about 250 C, which is above ordinary cooking temperatures but below the igni-
tion point.

Limitations
The results of modeling studies (e.g., Figure 3) and the results from UL tests of prototype units are 
encouraging. More extensive testing, especially with a broader range of nuisance sources and in side-
by-side tests with conventional smoke alarms, would be helpful for performance comparison with 
existing technology. Including a larger number of units in the tests would provide better statistical 
data on response predictability using manufactured sensors. Nevertheless, the UL tests demonstrated 
very similar responses for at least nine out of 10 units tested.
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Future Directions
The LDA technology is applicable for any combination of sensors in residential and commercial 
smoke alarms for which data has been recorded during anticipated situations, including ambient, 
nuisance or alarming conditions. The NIST test data19 that have been used in the prototype demon-
stration provide a good starting point. Additional field data can be added to bolster the appropriate 
responsivity to conditions found in specific consumer environments. In doing so, care must be taken 
to ensure that hazardous conditions are promptly recognized. Data recorded during UL tests of the 
prototypes can also be used, with appropriate calibration, to simulate how a particular set of aero-
sol, temperature and carbon monoxide sensors would act in UL tests. In fact, the UL data that was 
sampled by the detector units on wall and ceiling mounts would allow the performance of pairs of 
sensors, say ion and photo or photo and temperature, or even single sensors, to be fully simulated. 
Note that the performance of a single sensor can be improved by the LDA approach through the use 
of the baseline-corrected sensor output and one or more rates of change to provide additional chan-
nels of data.

Manufacturing always expects a certain level of variation in the sensitivity of ionization, photoelec-
tric, carbon monoxide and temperature sensors. The effects of these variations could be simulated, 
for example, by determining the time to alarm for combinations of sensors for which calibration or 
sensitivity differs from the norm. In this way, the manufacturing tolerance can be determined for the 
desired performance in both the field and UL qualification.

In the long term, new sensors may be developed that could be advantageously employed, in addition 
to conventional ionization, photoelectric, carbon monoxide and temperature sensors.20 Variants of 
existing sensors could be incorporated. For example, a photoelectric sensor using different or mul-
tiple wavelengths and scattering angles could extend its sensitivity or provide additional information 
about smoke (or nuisance) aerosols. The LDA approach provides a straightforward means for incorpo-
rating these sensors in an optimal algorithm.

19  Bukowski, et al.
20  Warmack, et al.
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Appendix
The following graphs provide data taken during the fire and nuisance tests recorded during the UL 
tests by Smart Smoke Alarm (Unit 7), as a typical example, which was located on the ceiling of the 
fire room. The “PE” and “Ion” readings are scaled in obscurance units as previously calibrated. Lamp 
or beam obscurance is calculated from the adjacent UL beam-transmittance sensor. Also shown are 
data from the adjacent light beam transmittance and MIC current recorded in a time synchronized 
fashion by UL personnel. In some tests, the temperature of the oil, bacon or copper plate was record-
ed. The Smart Smoke Alarm thermistor reading is shown as change in temperature over a five-min-
ute baseline correction (dT/5-min). Carbon monoxide from the built-in carbon monoxide sensor is 
shown in ppm. Finally, the algorithm in Smart Smoke Alarm determines the classification according 
to Table 3 as shown in the plots at the bottom of the graphs on Pages 19-31. A “Suppressed fire” 
category was added to indicate when the Smart Smoke Alarm determined that a fire condition exist-
ed, but the obscurance was not greater than 0.5 percent/foot as indicated by either the ionization or 
photoelectric sensors.

Code Class
0 Normal
1 Flaming fire
2 Grease fire
3 Nuisance (no alarm)
4 Smoldering fire
5 Suppressed fire (< 0.5%/ft)

Table 3. Key for the classification codes determined by the Smart Smoke Alarm. 
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Test 9: Flaming Liquid (heptane/toluene)
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 Test 10: Flaming Wood
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Test 11: Flaming Paper
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Test 12: Smoldering Wood
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Test 13: Flaming Foam
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Test 14: Smoldering Foam
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Test 15: Smoldering Wood (repeat)
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Test 16: Oil (small skillet) 
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Test 17: Steam
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Test 18: Steam (repeat)
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Test 19: Oil (large skillet)
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Test 20: Toast (until heavily charred)
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Test 21: Bacon
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Acronyms
AC alternating current

CPSC Consumer Product Safety Commission

LD linear discriminant

LDA linear discriminant analysis

MIC Measuring Ionization Chamber

NFPA National Fire Protection Association

NIST National Institute of Standards and Technology

ORNL Oak Ridge National Laboratory

PC principal component

PCA principal components analysis

ppm parts per million

SAS Statistical Analysis System

SPSS Statistical Package for the Social Sciences

UL Underwriters Laboratories

USFA U.S. Fire Administration
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